sábado, 27 de noviembre de 2010

La energía nuclear es la energía que se libera espontánea o artificialmente en las reacciones nucleares. Sin embargo, este término engloba otro significado, el aprovechamiento de dicha energía para otros fines como, por ejemplo, la obtención de energía eléctrica, térmica y mecánica a partir de reacciones nucleares, y su aplicación, bien sea con fines pacíficos o bélicos.[1] Así, es común referirse a la energía nuclear no solo como el resultado de una reacción sino como un concepto más amplio que incluye los conocimientos y técnicas que permiten la utilización de esta energía por parte del ser humano.

Estas reacciones se dan en los núcleos de algunos isótopos de ciertos elementos químicos, siendo la más conocida la fisión del uranio-235 (235U), con la que funcionan los reactores nucleares, y la más habitual en la naturaleza, en el interior de las estrellas, la fusión del par deuterio-tritio (2H-3H). Sin embargo, para producir este tipo de energía aprovechando reacciones nucleares pueden ser utilizados muchos otros isótopos de varios elementos químicos, como el torio-232, el plutonio-239, el estroncio-90 o el polonio-210 (232Th, 239Pu, 90Sr, 210Po; respectivamente).

Existen varias disciplinas y técnicas que usan de base la energía nuclear y van desde la generación de electricidad en las centrales nucleares hasta las técnicas de análisis de datación arqueológica (arqueometría nuclear), la medicina nuclear usada en los hospitales, etc.

Los dos sistemas más investigados y trabajados para la obtención de energía aprovechable a partir de la energía nuclear de forma masiva son la fisión nuclear y la fusión nuclear. La energía nuclear puede transformarse de forma descontrolada, dando lugar al armamento nuclear; o controlada en reactores nucleares en los que se produce energía eléctrica, energía mecánica o energía térmica. Tanto los materiales usados como el diseño de las instalaciones son completamente diferentes en cada caso.

Otra técnica, empleada principalmente en pilas de mucha duración para sistemas que requieren poco consumo eléctrico, es la utilización de generadores termoeléctricos de radioisótopos (GTR, o RTG en inglés), en los que se aprovechan los distintos modos de desintegración para generar electricidad en sistemas de termopares a partir del calor transferido por una fuente radiactiva.

La energía desprendida en esos procesos nucleares suele aparecer en forma de partículas subatómicas en movimiento. Esas partículas, al frenarse en la materia que las rodea, producen energía térmica. Esta energía térmica se transforma en energía mecánica utilizando motores de combustión externa, como las turbinas de vapor. Dicha energía mecánica puede ser empleada en el transporte, como por ejemplo en los buques nucleares; o para la generación de energía eléctrica en centrales nucleares.

La principal característica de este tipo de energía es la alta calidad de la energía que puede producirse por unidad de masa de material utilizado en comparación con cualquier otro tipo de energía conocida por el ser humano, pero sorprende la poca eficiencia del proceso, ya que se desaprovecha entre un 86 y 92% de la energía que se libera.

La energía mareomotriz es la que se obtiene aprovechando las mareas, es decir, la diferencia de altura media de los mares según la posición relativa de la Tierra y la Luna, y que resulta de la atracción gravitatoria de esta última y del Sol sobre las masas de agua de los mares. Esta diferencia de alturas puede aprovecharse poniendo partes móviles al proceso natural de ascenso o descenso de las aguas, junto con mecanismos de canalización y depósito, para obtener movimiento en un eje.

Mediante su acoplamiento a un alternador se puede utilizar el sistema para la generación de electricidad, transformando así la energía mareomotriz en energía eléctrica, una forma energética más útil y aprovechable. Es un tipo de energía renovable limpia.

La energía mareomotriz tiene la cualidad de ser renovable, en tanto que la fuente de energía primaria no se agota por su explotación, y es limpia, ya que en la transformación energética no se producen subproductos contaminantes gaseosos, líquidos o sólidos. Sin embargo, la relación entre la cantidad de energía que se puede obtener con los medios actuales y el coste económico y ambiental de instalar los dispositivos para su proceso han impedido una proliferación notable de este tipo de energía.

Otras formas de extraer energía del mar son: las olas, la energía undimotriz; de la diferencia de temperatura entre la superficie y las aguas profundas del océano, el gradiente térmico oceánico; de la salinidad; de las corrientes submarinas o la eólica marina

En España, el Gobierno de Cantabria y el Instituto para la Diversificación y Ahorro Energético (IDAE) quieren crear un centro de I+D+i en la costa de Santoña. La planta podría atender al consumo doméstico anual de unos 2.500 hogares.

La energía de la biomasa es un tipo de energía renovable procedente del aprovechamiento de la materia orgánica e inorgánica formada en algún proceso biológico o mecánico, generalmente, de las sustancias que constituyen los seres vivos (plantas, ser humano, animales, entre otros), o sus restos y residuos. El aprovechamiento de la energía de la biomasa se hace directamente (por ejemplo, por combustión), o por transformación en otras sustancias que pueden ser aprovechadas más tarde como combustibles o alimentos.[1]

No se considera como energía de la biomasa, aunque podría incluirse en un sentido amplio, la energía contenida en los alimentos suministrados a animales y personas, la cual es convertida en energía en estos organismos en un porcentaje elevado, en el proceso de la respiración celular.
Origen de la energía de la biomasa

Una parte de la energía que llega a la Tierra procedente del Sol es absorbida por las plantas, a través de la fotosíntesis, y convertida en materia orgánica con un mayor contenido energético que las sustancias minerales. De este modo, cada año se producen 2·1011 toneladas de materia orgánica seca, con un contenido de energía equivalente a 68000 millones de tep (toneladas equivalentes de petróleo), que equivale aproximadamente a cinco veces la demanda energética mundial.[2] A pesar de ello, su enorme dispersión hace que sólo se aproveche una mínima parte de la misma. Entre las formas de biomasa más destacables por su aprovechamiento energético destacan los combustibles energéticos (caña de azúcar, remolacha, etc.) y los residuos (agrícolas, forestales, ganaderos, urbanos, lodos de depuradora, etc.)

Se distinguen varios tipos de biomasa, según la procedencia de las sustancias empleadas, como la biomasa vegetal, relacionada con las plantas en general (troncos, ramas, tallos, frutos, restos y residuos vegetales,etc.); y la biomasa animal, obtenida a partir de sustancias de origen animal (grasas, restos, excrementos, etc.).

Otra formas de clasificar los tipos de biomasa se realiza a partir del material empleado como fuente de energía:

Natural

Es aquella que abarca los bosques, árboles, matorrales, plantas de cultivo, etc. Por ejemplo, en las explotaciones forestales se producen una serie de residuos o subproductos, con un alto poder energético, que no sirven para la fabricación de muebles ni papel, como son las hojas y ramas pequeñas, y que se pueden aprovechar como fuente energética.

Los residuos de la madera se pueden aprovechar para producir energía. De la misma manera, se pueden utilizar como combustible los restos de las industrias de transformación de la madera, como los aserraderos, carpinterías o fábricas de mueble y otros materiales más. Los “cultivos energéticos” son otra forma de biomasa consistente en cultivos o plantaciones que se hacen con fines exclusivamente energéticos, es decir, para aprovechar su contenido e energía. Entre este tipo de cultivos tenemos, por ejemplo, árboles como los chopos u otras plantas específicas. A veces, no se suelen incluir en la energía de la biomasa que queda restringida a la que se obtiene de modo secundario a partir de residuos, restos, etc.

Los biocarburantes son combustibles líquidos que proceden de materias agrícolas ricas en azúcares, como los cereales (bioetanol) o de grasas vegetales, como semillas de colza o girasol de calabaza (biodiésel). Este tipo también puede denominarse como “cultivos energéticos”. El bioetanol va dirigido a la sustitución de la gasolina; y el [biodiesel] trata de sustituir al gasóleo. Se puede decir que ambos constituyen una alternativa a los combustibles tradicionales del sector del transporte, que derivan del petróleo.

Residual

Es aquella que corresponde a los residuos de paja, serrín, estiércol, residuos de mataderos, basuras urbanas, etc.

El aprovechamiento energético de la biomasa residual, por ejemplo, supone la obtención de energía a partir de los residuos de madera y los residuos agrícolas (paja, cáscaras, huesos...), las basuras urbanas, los residuos ganaderos, como purines o estiércoles, los lodos de depuradora, etc. Los residuos agrícolas también pueden aprovecharse energéticamente y existen plantas de aprovechamiento energético de la paja residual de los campos que no se utiliza para forraje de los animales.

Los residuos ganaderos, por otro lado, también son una fuente de energía. Los purines y estiércoles de las granjas de vacas y cerdos pueden valorizarse energéticamente por ejemplo, aprovechando el gas (o biogás) que se produce a partir de ellos, para producir calor y electricidad. Y de la misma forma puede aprovecharse la energía de las basuras urbanas, porque también producen un gas o biogas combustible, al fermentar los residuos orgánicos, que se puede captar y se puede aprovechar energéticamente produciendo energía eléctrica y calor en los que se puede denominar como plantas de valorización energética de biogas de vertedero.

Fósil

Es aquella que procede de la biomasa obtenida hace millones de años y que ha sufrido grandes procesos de transformación hasta la formación de sustancias de gran contenido energético como el carbón, el petróleo, o el gas natural, etc. No es un tipo de energía renovable, por lo que no se considera como energía de la biomasa, sino que se incluye entre las energías fósiles.
Una central hidroeléctrica es aquella que utiliza energía hidráulica para la generación de energía eléctrica. Son el resultado actual de la evolución de los antiguos molinos que aprovechaban la corriente de los ríos para mover una rueda.

En general estas centrales aprovechan la energía potencial que posee la masa de agua de un cauce natural en virtud de un desnivel, también conocido como salto geodésico. El agua en su caída entre dos niveles del cauce se hace pasar por una turbina hidráulica la cual trasmite la energía a un generador donde se transforma en energía eléctrica.

Caracteristicas de centrales hidroelectricas

Las dos características principales de una central hidroeléctrica, desde el punto de vista de su capacidad de generación de electricidad son:

* La potencia, que está en función del desnivel existente entre el nivel medio del embalse y el nivel medio de las aguas debajo de la central, y del caudal máximo turbinable, además de las características de las turbinas y de los generadores usados en la transformación.
* La energía garantizada en un lapso de tiempo determinado, generalmente un año, que está en función del volumen útil del embalse, y de la potencia instalada.

La potencia de una central puede variar desde unos pocos MW (megavatios), como en el caso de las minicentrales hidroeléctricas, hasta 14.000 MW como en Paraguay y Brasil donde se encuentra la segunda mayor central hidroeléctrica del mundo (la mayor es la Presa de las Tres Gargantas, en China, con una potencia de 22.500 MW), la Itaipú que tiene 20 turbinas de 700 MW cada una.

Las centrales hidroeléctricas y las centrales térmicas (que usan combustibles fósiles) producen la energía eléctrica de una manera muy similar. En ambos casos la fuente de energía es usada para impulsar una turbina que hace girar un generador eléctrico, que es el que produce la electricidad. Una Central térmica usa calor para, a partir de agua, producir el vapor que acciona las paletas de la turbina, en contraste con la planta hidroeléctrica, la cual usa la fuerza del agua directamente para accionar la turbina.

Un ejemplo de estas es el Proyecto Hidroeléctrico Palomino[1] , ubicado en las inmediaciones del municipio de Bohechio, Provincia San Juan, República Dominicana, el proyecto hidroeléctrico Palomino le ahorrará al País alrededor de 400 mil barriles de petróleo al año que, a la tasa actual, representa 60 millones de dólares por ahorro de la factura petrolera.

Centrales hidroeléctricas

La energía hidroeléctrica es una de las más rentables. El costo inicial de construcción es elevado, pero sus gastos de explotación y mantenimiento son relativamente bajos. Aún así tienen unos condicionantes:

Las condiciones pluviométricas medias del año deben ser favorables

El lugar de emplazamiento está supeditado a las características y configuración del terreno por el que discurre la corriente de agua.

El funcionamiento básico consiste en aprovechar la energía cinética del agua almacenada, de modo que accione las turbinas hidráulicas.

En el aprovechamiento de la energía hidráulica influyen dos factores: el caudal y la altura del salto para aprovechar mejor el agua llevada por los ríos, se construyen presas para regular el caudal en función de la época del año. La presa sirve también para aumentar el salto.

Otra manera de incrementar la altura del salto es derivando el agua por un canal de pendiente pequeña (menor que la del cauce del río), consiguiendo un desnivel mayor entre el canal y el cauce del río.

El agua del canal o de la presa penetra en la tubería donde se efectúa el salto. Su energía potencial se convierte en energía cinética llegando a las salas de máquinas, que albergan a las turbinas hidráulicas y a los generadores eléctricos. El agua al llegar a la turbina la hace girar sobre su eje, que arrastra en su movimiento al generador eléctrico.

La tecnología de las principales instalaciones se ha mantenido igual durante el siglo XX.

Las turbinas pueden ser de varios tipos, según los tipos de centrales: Pelton (saltos grandes y caudales pequeños), Francis (salto más reducido y mayor caudal), Kaplan (salto muy pequeño y caudal muy grande) y de hélice.

Las centrales dependen de un gran embalse de agua contenido por una presa. El caudal de agua se controla y se puede mantener casi constante. El agua se transporta por unos conductos o tuberías forzadas, controlados con válvulas para adecuar el flujo de agua por las turbinas con respecto a la demanda de electricidad. El agua sale por los canales de descarga.

El agua es devuelta al río en las condiciones en que se tomó, de modo que se puede volver a utilizar por otra central situada aguas abajo o para consumo.

La utilización de presas tiene varios inconvenientes. Muchas veces se inundan terrenos fértiles y en ocasiones poblaciones que es preciso evacuar. La fauna piscícola puede ser alterada si no se toman medidas que la protejan.

Se mide en metros o hectómetros cúbicos. Los embalses tienen pérdidas debidas a causas naturales como evaporación o filtraciones.

Conceptos

Nivel: horizontalidad constante de la superficie de un terreno, o de la superficie libre de los líquidos.

Cota: valor de la altura a la que se encuentra una superficie respecto del nivel del mar.

Caudal: cantidad de líquido, expresada en metros cúbicos o en litros, que circula a través de cada una de las secciones de una conducción, abierta o cerrada en la unidad de tiempo.

Salto de agua: paso brusco o caída de masas de agua desde un nivel a otro inferior. Numéricamente se identifica por la diferencia de cota que se da en metros.

Embalse: resulta de almacenar todas las aguas que afluyen del territorio sobre el que está enclavado. Las dimensiones del embalse dependen de los caudales aportados por el río.
Su capacidad útil es toda aquélla agua embalsada por encima de la toma de la central. La capacidad total incluye el agua no utilizable.

Tipos de centrales hidroeléctricas

Clasificación

Se pueden clasificar según varios argumentos, como características técnicas, peculiaridades del asentamiento y condiciones de funcionamiento.

En primer lugar hay que distinguir las que utilizan el agua según discurre normalmente por el cauce de un río, y aquellas otras a las que ésta llega, convenientemente regulada, desde un lago o pantano. Se denominan:

Centrales de Agua Fluente, Centrales de agua embalsada, Centrales de Regulación, Centrales de Bombeo.

Según la altura del salto de agua o desnivel existente:

Centrales de Alta Presión, Centrales de Media Presión, Centrales de Baja Presión

Centrales de Agua Fluente:

Llamadas también de agua corriente, o de agua fluyente. Se construyen en los lugares en que la energía hidráulica debe ser utilizada en el instante en que se dispone de ella, para accionar las turbinas hidráulicas.

No cuentan prácticamente con reserva de agua, oscilando el caudal suministrado según las estaciones del año. En la temporada de precipitaciones abundantes (de aguas altas), desarrollan su potencia máxima, y dejan pasar el agua excedente. Durante la época seca (aguas bajas), la potencia disminuye en función del caudal, llegando a ser casi nulo en algunos ríos en la época del estío.

Su construcción se realiza mediante presas sobre el cauce de los ríos, para mantener un desnivel constante en la corriente de agua.

Centrales de agua embalsada:

Se alimenta del agua de grandes lagos o de pantanos artificiales (embalses), conseguidos mediante la construcción de presas. El embalse es capaz de almacenar los caudales de los ríos afluentes, llegando a elevados porcentajes de captación de agua en ocasiones. Este agua es utilizada según la demanda, a través de conductos que la encauzan hacia las turbinas.

Centrales de Regulación:

Prestan un gran servicio en situaciones de bajos caudales, ya que el almacenamiento es continuo, regulando de modo conveniente para la producción. Se adaptan bien para cubrir horas punta de consumo.

Centrales de Bombeo:

Se denominan "de acumulación". Acumulan caudal mediante bombeo, con lo que su actuación consiste en acumular energía potencial. Pueden ser de dos tipos, de turbina y bomba, o de turbina reversible.

La alimentación del generador que realiza el bombeo desde aguas abajo, se puede realizar desde otra central hidráulica, térmica o nuclear.

No es una solución de alto rendimiento, pero se puede admitir como suficientemente rentable, ya que se compensan las pérdidas de agua o combustible.

Centrales de Alta Presión:

Aquí se incluyen aquellas centrales en las que el salto hidráulico es superior a los 200 metros de altura. Los caudales desalojados son relativamente pequeños, 20 m3/s por máquina.

Situadas en zonas de alta montaña, y aprovechan el agua de torrentes, por medio de conducciones de gran longitud.

Centrales de Media Presión:

Aquellas que poseen saltos hidráulicos de entre 200-20 metros aproximadamente. Utilizan caudales de 200m3/s por turbina.

En valles de media montaña, dependen de embalses.

Centrales de Baja Presión:

Sus saltos hidráulicos son inferiores a 20 metros. Cada máquina se alimenta de un caudal que puede superar los 300m3/s.

La energía hidráulica se basa en aprovechar la caída del agua desde cierta altura. La energía potencial, durante la caída, se convierte en cinética. El agua pasa por las turbinas a gran velocidad, provocando un movimiento de rotación que finalmente se transforma en energía eléctrica por medio de los generadores.

Es un recurso natural disponible en las zonas que presentan suficiente cantidad de agua y, una vez utilizada, es devuelta río abajo. Su desarrollo requiere construir pantanos, presas, canales de derivación y la instalación de grandes turbinas y equipamiento para generar electricidad. Todo ello implica la inversión de grandes sumas de dinero, por lo que no resulta competitiva en regiones donde el carbón o el petróleo son baratos. Sin embargo, el peso de las consideraciones medioambientales y el bajo mantenimiento que precisan una vez estén en funcionamiento centran la atención en esta fuente de energía.



La fuerza del agua ha sido utilizada durante mucho tiempo para moler trigo, pero fue con la Revolución Industrial, y especialmente a partir del siglo XIX, cuando comenzó a tener gran importancia con la aparición de las ruedas hidráulicas para la producción de energía eléctrica. Poco a poco la demanda de electricidad fue en aumento. El bajo caudal del verano y otoño, unido a los hielos del invierno hacían necesaria la construcción de grandes presas de contención, por lo que las ruedas hidráulicas fueron sustituidas por máquinas de vapor en cuanto se pudo disponer de carbón.

La primera central hidroeléctrica moderna se construyó en 1880 en Northumberland, Gran Bretaña. El renacimiento de la energía hidráulica se produjo por el desarrollo del generador eléctrico, seguido del perfeccionamiento de la turbina hidráulica y debido al aumento de la demanda de electricidad a principios del siglo XX. En 1920 las centrales hidroeléctricas generaban ya una parte importante de la producción total de electricidad.

A principios de la década de los noventa, las primeras potencias productoras de energía hidroeléctrica eran Canadá y Estados Unidos. Canadá obtiene un 60% de su electricidad de centrales hidráulicas.

En todo el mundo, este tipo de energía representa aproximadamente la cuarta parte de la producción total de electricidad, y su importancia sigue en aumento. Los países en los que constituye fuente de electricidad más importante son Noruega (99%), Zaire (97%) y Brasil (96%). La central de Itaipú, en el río Paraná, está situada entre Brasil y Paraguay, se inauguró en 1982 y tiene la mayor capacidad generadora del mundo. Como referencia, la presa Grand Coulee, en Estados Unidos, genera unos 6.500 Mw y es una de las más grandes.

En algunos países se han instalado centrales pequeñas, con capacidad para generar entre un kilovatio y un megavatio. En muchas regiones de China, por ejemplo, estas pequeñas presas son la principal fuente de electricidad. Otras naciones en vías de desarrollo están utilizando este sistema con buenos resultados.

Se puede transformar a muy diferentes escalas, existen desde hace siglos pequeñas explotaciones en las que la corriente de un río mueve un rotor de palas y genera un movimiento aplicado, por ejemplo, en molinos rurales. Sin embargo, la utilización más significativa la constituyen las centrales hidroeléctricas de represas, aunque estas últimas no son consideradas formas de energía verde por el alto impacto ambiental que producen.

Cuando el Sol calienta la Tierra, además de generar corrientes de aire, hace que el agua de los mares, principalmente, se evapore y ascienda por el aire y se mueva hacia las regiones montañosas, para luego caer en forma de lluvia. Esta agua se puede colectar y retener mediante presas. Parte del agua almacenada se deja salir para que se mueva los álabes de una turbina engranada con un generador de energía eléctrica.

La energía solar es la energía que proporciona el sol a través de sus radiaciones y que se difunde, directamente o de modo difuso, en la atmósfera.

energiasolar1 Imagen: afloresm

En la Tierra, hogar de la humanidad y tercer planeta del sistema solar, la energía solar es el origen del ciclo del agua y del viento. El reino vegetal, del que depende el reino animal, también utiliza la energía solar transformándola en energía química a través de la fotosíntesis. Con excepción de la energía nuclear, de la energía geotérmica y de la energía mareomotriz (proveniente del movimiento del agua creado por las mareas), la energía solar es la fuente de todas las energías sobre la Tierra.

energiasolar2 Imagen: osinaref

Gracias a diversos procesos, la energía solar se puede transformar en otra forma de energía útil para la actividad humana: en calor, en energía eléctrica o en biomasa. Por ende, el término “energía solar” se utiliza, con frecuencia, para describir la electricidad o el calor obtenidos a partir de ella.

La energía eólica es una forma indirecta de energía solar, ya que son las diferencias de temperaturas y de presiones en la atmósfera, provocadas por la absorción de la radiación solar, las que ponen al viento en movimiento.

Energia eolica Energia eolica Imagen: rialso

Hace miles de años que se utiliza la energía del viento (eólica). Los persas fueron los pioneros de los molinos de viento. La energía eólica- o el aerogenerador de hoy- ya no se parece tanto al modelo de estos antepasados que la utilizaban para moler trigo. Esta energía eólica recibe su nombre de Aeolus (griego antiguo Αἴολος / Aiolos), nombre del dios del viento en la antigua Grecia.

molinos de viento imagen: vituh2001

El aerogenerador es un generador de corriente eléctrica a partir de la energía cinética del viento. Esta imagen, por ejemplo, corresponde a un campo de aerogeneradores en Pozo Izquierdo, Gran Canaria.

La energía eólica es, en la actualidad, una energía limpia y también la menos costosa de producir, lo que explica el fuerte entusiasmo por esta tecnología.

Existen diferentes tipos de energía eólica:
eolicareciclable